27 research outputs found

    A Health Technology Assessment in Maxillofacial Cancer Surgery by Using the Six Sigma Methodology

    Get PDF
    Squamous cell carcinoma represents the most common cancer affecting the oral cavity. At the University of Naples “Federico II”, two different antibiotic protocols were used in patients undergoing oral mucosa cancer surgery from 2006 to 2018. From 2011, there was a shift; the combination of Cefazolin plus Clindamycin as a postoperative prophylactic protocol was chosen. In this paper, a health technology assessment (HTA) is performed by using the Six Sigma and DMAIC (Define, Measure, Analyse, Improve, Control) cycle in order to compare the performance of the antibiotic protocols according to the length of hospital stay (LOS). The data (13 variables) of two groups were collected and analysed; overall, 136 patients were involved. The American Society of Anaesthesiologist score, use of lymphadenectomy or tracheotomy and the presence of infections influenced LOS significantly (p-value < 0.05) in both groups. Then, the groups were compared: the overall difference between LOS of the groups was not statistically significant, but some insights were provided by comparing the LOS of the groups according to each variable. In conclusion, in light of the insights provided by this study regarding the comparison of two antibiotic protocols, the utilization of DMAIC cycle and Six Sigma tools to perform HTA studies could be considered in future research

    Linear discriminant analysis and principal component analysis to predict coronary artery disease

    Get PDF
    Coronary artery disease is one of the most prevalent chronic pathologies in the modern world, leading to the deaths of thousands of people, both in the United States and in Europe. This article reports the use of data mining techniques to analyse a population of 10,265 people who were evaluated by the Department of Advanced Biomedical Sciences for myocardial ischaemia. Overall, 22 features are extracted, and linear discriminant analysis is implemented twice through both the Knime analytics platform and R statistical programming language to classify patients as either normal or pathological. The former of these analyses includes only classification, while the latter method includes principal component analysis before classification to create new features. The classification accuracies obtained for these methods were 84.5 and 86.0 per cent, respectively, with a specificity over 97 per cent and a sensitivity between 62 and 66 per cent. This article presents a practical implementation of traditional data mining techniques that can be used to help clinicians in decision-making; moreover, principal component analysis is used as an algorithm for feature reduction

    Toward Predicting Motion Sickness Using Virtual Reality and a Moving Platform Assessing Brain, Muscles, and Heart Signals.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadMotion sickness (MS) and postural control (PC) conditions are common complaints among those who passively travel. Many theories explaining a probable cause for MS have been proposed but the most prominent is the sensory conflict theory, stating that a mismatch between vestibular and visual signals causes MS. Few measurements have been made to understand and quantify the interplay between muscle activation, brain activity, and heart behavior during this condition. We introduce here a novel multimetric system called BioVRSea based on virtual reality (VR), a mechanical platform and several biomedical sensors to study the physiology associated with MS and seasickness. This study reports the results from 28 individuals: the subjects stand on the platform wearing VR goggles, a 64-channel EEG dry-electrode cap, two EMG sensors on the gastrocnemius muscles, and a sensor on the chest that captures the heart rate (HR). The virtual environment shows a boat surrounded by waves whose frequency and amplitude are synchronized with the platform movement. Three measurement protocols are performed by each subject, after each of which they answer the Motion Sickness Susceptibility Questionnaire. Nineteen parameters are extracted from the biomedical sensors (5 from EEG, 12 from EMG and, 2 from HR) and 13 from the questionnaire. Eight binary indexes are computed to quantify the symptoms combining all of them in the Motion Sickness Index (I MS ). These parameters create the MS database composed of 83 measurements. All indexes undergo univariate statistical analysis, with EMG parameters being most significant, in contrast to EEG parameters. Machine learning (ML) gives good results in the classification of the binary indexes, finding random forest to be the best algorithm (accuracy of 74.7 for I MS ). The feature importance analysis showed that muscle parameters are the most relevant, and for EEG analysis, beta wave results were the most important. The present work serves as the first step in identifying the key physiological factors that differentiate those who suffer from MS from those who do not using the novel BioVRSea system. Coupled with ML, BioVRSea is of value in the evaluation of PC disruptions, which are among the most disturbing and costly health conditions affecting humans.Landspitali University Hospital, Reykjavi

    Environmental conditions modulate the switch among different states of the hydrophobin Vmh2 from Pleurotus ostreatus

    No full text
    Fungal hydrophobins are amphipathic, highly surface-active and self-assembling proteins. The class I hydrophobin Vmh2 from the basidiomycete fungus Pleurotus ostreatus seems to be the most hydrophobic hydrophobin characterized so far. Structural and functional properties of the protein as a function of the environmental conditions have been determined. At least three distinct phenomena can occur, being modulated by the environmental conditions. 1- When the pH increases or in the presence of Ca2+ ions, an assembled state, -sheet rich, is formed; 2- when the solvent polarity increases the protein shows an increased tendency to reach hydrophobic/hydrophilic interfaces, with no detectable conformational change; 3- a reversible conformational change and reversible aggregation occurs at high temperature. Modulation of the Vmh2 conformational/aggregation features by changing the environmental conditions can be very useful in view of the potential protein applications

    Antitumor Potential and Phytochemical Profile of Plants from Sardinia (Italy), a Hotspot for Biodiversity in the Mediterranean Basin

    No full text
    Sardinia (Italy), with its wide range of habitats and high degree of endemism, is an important area for plant-based drug discovery studies. In this work, the antitumor activity of 35 samples from Sardinian plants was evaluated on human osteosarcoma cells U2OS. The results showed that five plants were strongly antiproliferative: Arbutus unedo (AuL), Cynara cardunculus (CyaA), Centaurea calcitrapa (CcA), Smilax aspera (SaA), and Tanacetum audibertii (TaA), the latter endemic to Sardinia and Corsica. Thus, their ability to induce cell cycle arrest and apoptosis was tested. All extracts determined cell cycle block in G2/M phase. Nevertheless, the p53 expression levels were increased only by TaA. The effector caspases were activated mainly by CycA, TaA, and CcA, while AuL and SaA did not induce apoptosis. The antiproliferative effects were also tested on human umbilical vein endothelial cells (HUVEC). Except for AuL, all the extracts were able to reduce significantly cell population, suggesting a potential antiangiogenic activity. The phytochemical composition was first explored by 1H NMR profiling, followed by further purifications to confirm the structure of the most abundant metabolites, such as phenolic compounds and sesquiterpene lactones, which might play a role in the measured bioactivity

    Could the Combined Administration of Bone Antiresorptive Drug, Taxanes, and Corticosteroids Worsen Medication Related Osteonecrosis of the Jaws in Cancer Patients?

    Get PDF
    The study presents a report of 58 metastatic cancer patients who developed osteonecrosis of the jaws after being treated with zoledronic acid and taxanes, plus corticosteroids. A retrospective analysis of data registered in the archives of two Italian osteonecrosis of the jaws treatment centers, who are based at the University of Messina and at the University of Palermo, was performed in order to study, in these patients, demographic data and characteristics such as frequency of cancer location, lines of therapy, frequency of cancer drugs, presence/absence of oral trigger, number, location, and stage of jaw osteonecrosis. It was found that the majority of patients developed advanced stages of osteonecrosis, frequently complicated with infection. It was hypothesized that the concurrent administration of chemotherapeutic agents could be eventually considered as a factor able to allow a faster worsening of the clinical manifestation through the exacerbation of soft tissue defects, due to chemotherapy drugs

    A new and efficient procedure to load bioactive molecules within the human heavy-chain ferritin nanocage

    No full text
    For their easy and high-yield recombinant production, their high stability in a wide range of physico-chemical conditions and their characteristic hollow structure, ferritins (Fts) are considered useful scaffolds to encapsulate bioactive molecules. Notably, for the absence of immunogenicity and the selective interaction with tumor cells, the nanocages constituted by the heavy chain of the human variant of ferritin (hHFt) are optimal candidates for the delivery of anti-cancer drugs. hHFt nanocages can be disassembled and reassembled in vitro to allow the loading of cargo molecules, however the currently available protocols present some relevant drawbacks. Indeed, protein disassembly is achieved by exposure to extreme pH (either acidic or alkaline), followed by incubation at neutral pH to allow reassembly, but the final protein recovery and homogeneity are not satisfactory. Moreover, the exposure to extreme pH may affect the structure of the molecule to be loaded. In this paper, we report an alternative, efficient and reproducible procedure to reversibly disassemble hHFt under mild pH conditions. We demonstrate that a small amount of sodium dodecyl sulfate (SDS) is sufficient to disassemble the nanocage, which quantitatively reassembles upon SDS removal. Electron microscopy and X-ray crystallography show that the reassembled protein is identical to the untreated one. The newly developed procedure was used to encapsulate two small molecules. When compared to the existing disassembly/reassembly procedures, our approach can be applied in a wide range of pH values and temperatures, is compatible with a larger number of cargos and allows a higher protein recovery

    Two-photon absorption properties and <sup>1</sup>O<inf>2</inf> generation ability of Ir complexes: An unexpected large cross section of [Ir(CO)<inf>2</inf>Cl(4-(para-di-n-butylaminostyryl)pyridine)]

    No full text
    The new complexes cis-[Ir(CO)(2)Cl(4-(para-di-n-butylaminostyryl)pyridine)] (1) and [Ir(cyclometallated-2-phenylpyridine) (2)(4,4'-(para-di-n-butylaminostyryl)-2,2'-bipyridine)][PF6] (3) were synthesized and fully characterized along with the known complex Ir(cyclometallated-2-phenylpyridine)(2)(5-Me-1,10-phenanthroline)][ PF6] (2). Remarkably, complex 1, with an Ir(I) centre, displays fluorescence - as opposed to the phosphorescence typical of many Ir(III) complexes -with a modestly high quantum yield in solution, opening a new route for the design of iridium-based emitters which should not be limited to the +3 oxidation state. It is also characterized by an unexpectedly large two-photon absorption (TPA) cross section, an order of magnitude higher than that previously reported for Ir(III) or Pt(II) complexes. The great potential of cyclometallated Ir(III) complexes for photodynamic therapy was confirmed, with 2 and 3 showing a good singlet oxygen generation ability, coupled with a modest TPA activity for 2

    Environmental Conditions Modulate the Switch among Different States of the Hydrophobin Vmh2 from Pleurotus ostreatus

    No full text
    Fungal hydrophobins are amphipathic, highly surface-active, and self-assembling proteins. The class I hydrophobin Vmh2 from the basidiomycete fungus Pleurotus ostreatus seems to be the most hydrophobic hydrophobin characterized so far. Structural and functional properties of the protein as a function of the environmental conditions have been determined. At least three distinct phenomena can occur, being modulated by the environmental conditions: (1) when the pH increases or in the presence of Ca<sup>2+</sup> ions, an assembled state, β-sheet rich, is formed; (2) when the solvent polarity increases, the protein shows an increased tendency to reach hydrophobic/hydrophilic interfaces, with no detectable conformational change; and (3) when a reversible conformational change and reversible aggregation occur at high temperature. Modulation of the Vmh2 conformational/aggregation features by changing the environmental conditions can be very useful in view of the potential protein applications
    corecore